Green Function and Self-adjoint Laplacians on Polyhedral Surfaces
نویسندگان
چکیده
منابع مشابه
Self-adjoint operators on surfaces in Rn
Our aim in this paper is to define principal and characteristic directions at points on a smooth 2-dimensional surface in the Euclidean space R in such a way that their equations together with that of the asymptotic directions behave in the same way as the triple formed by their counterpart on smooth surfaces in the Euclidean space R. The definitions we propose are derived from a more general a...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولCompact polyhedral surfaces of an arbitrary genus and determinants of Laplacians
Compact polyhedral surfaces (or, equivalently, compact Riemann surfaces with conformal flat conical metrics) of an arbitrary genus are considered. After giving a short self-contained survey of their basic spectral properties, we study the zeta-regularized determinant of the Laplacian as a functional on the moduli space of these surfaces. An explicit formula for this determinant is obtained.
متن کاملGeodesic Flow on Polyhedral Surfaces
On a curved surface the front of a point wave evolves in concentric circles which start to overlap and branch after a certain time. This evolution is described by the geodesic ow and helps us to understand the geometry of surfaces. In this paper we compute the evolution of distance circles on polyhedral surfaces and develop a method to visualize the set of circles, their overlapping, branching,...
متن کاملGeodesic Spanners on Polyhedral Surfaces
In this paper we consider the problem of efficiently constructing geodesic t-spanners. We consider finding spanners on the surface of a 3 dimensional polyhedron. If Steiner vertices are allowed on the surface of the polyhedron, then we are able to construct sparse t-spanners. If no Steiner vertices are allowed, then we establish lower bounds on the maximum node degree, depending on the spanning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2019
ISSN: 0008-414X,1496-4279
DOI: 10.4153/s0008414x19000336